What is Beamforming?

Beamforming Waves

The term beamforming refers to a method of directing a wireless signal towards a specific receiving device, whereas the alternative would be allowing the signal to spread in all directions from a transmitter the way it naturally would.

By focusing a signal in a specific direction, beamforming delivers higher signal quality to a receiver. This means information is transmitted faster and more accurately. Furthermore, this accuracy can be reached without boosting broadcast power.

Beamforming | Unfocused Signal
Example of Radiation Pattern with
a Fixed Beamformer
Beamforming | Focused Signal
Example of Radiation Pattern with
an Adaptive Beamformer

An antenna array is comprised of multiple radiating elements, each of which contributes an element pattern to the array’s radiation pattern. Each element pattern is a spatial distribution of RF power arising from the amplitude and phase of the RF signal at the element’s RF feed point. The array’s radiation pattern is determined by the coherent sum of all element fields, each which may be “weighted” by an additional amplitude and phase. Such weighted patterns exemplify beamforming in the array, whereby sidelobe levels and nulls are produced and controlled by adjusting the element weights.

Beamforming techniques loosely fall into two categories: conventional and adaptive. 

Fixed beamforming generally describes a conventional technique where the antenna array pattern is obtained from fixed element weights that do not depend on the signal environment. Conversely, adaptive beamforming element weights that do depend on and can adapt to the signal environment via some feedback mechanism. 

Adaptive beamforming, which was initially developed in the 1960s, uses a digital signal processor (DSP) to compute the complex weights using an adaptive algorithm, which then generates an array factor for an optimal signal-to-interference-plus-noise ratio (SINR). Basically, adaptive beamformers are designed to adjust to differing situations in order to maximize or minimize SINR, which helps measure the quality of wireless communication.

The average civilian experiences adaptive beamforming technology in their every day life. In fact, wireless carriers use adaptive beamforming to provide next-generation wireless communications (5G) and long-term evolution (LTE) services.

Antenna 101: Types and Applications

We are experts in custom antenna design and manufacturing for various applications. Some common applications include vehicular, airborne, communications, SIGINT (signal intelligence), and ISR (intelligence, surveillance, and reconnaissance). While certain antenna types are more suitable for each of these specific applications, many of our products are versatile and multi-platform.

In this article, we take a look at some of the different antenna types, and what applications they can be used for.

Broadband AntennasThese antennas operate over a wide band of frequencies, or “bandwidths.”  Generally, the bandwidths over which they operate are higher than 1 octave. They come in a variety of forms, including spirals, log-periodic antennas, dipoles and Vivaldi notch elements.

HSA-056 | Antenna Types

An example of a broadband antenna, the HSA-056 is a 6″ spiral ideally suited for handheld and vehicular applications. With its wide bandwidth, broad beamwidth, and high RF efficiency, the antenna is also suitable for applications such as SIGINT, EW, and wideband communications.

Narrowband Antenna In contrast to broadband antennas, narrowband antennas operate over relatively narrow bandwidths, generally much less than 1 octave. Patch and resonant cavity antennas are typical examples of narrowband antennas.

RFD-8689 | Antenna Types

The RDF-8696 is a narrowband transducer for short range reading and writing of RFID tags including GEN2 tags. Some of the applications it can be used for include printers and various forms of automation equipment.

Antenna Arrays & Beamformers – Array antennas consist of multiple radiating elements. In some cases, these elements are fed by a corporate power divider or “beamformer.” The simplest beamformer is a power division network, which yields a fixed radiation beam. A beamformer that incorporates controllable phase or delay elements is called a steerable beam array or “phased array.”

MBA-0127 | Antenna Types

Also nicknamed the “Hexband Array,” the MBA-0127 is compact, low-profile, single-port antenna covering multiple bands from 400MHz to 2.2GHz. This array is useful for multiband communications, airborne applications, ISR applications, and SIGINT.

Genetic AntennaThese antennas are designed entirely by an optimization algorithm, which can be a genetic algorithm or some other iterative method. While many antennas are pre-existent designs that are modified through optimizations, these antennas are entirely new designs generated solely via computer.

Genetic Antenna | Antenna Types

Genetic antennas are perhaps the most unique, mainly because they are almost completely custom, like the one pictured above.